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Abstract

In experimental research into percussion ‘languages’, an interactive computer
system, the Bol Processor, has been developed by the authors to analyse the
performances of expert musicians and generate its own musical items that were assessed
for quality and accuracy by the informants. The problem of transferring knowledge from
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grammatical inferencer named QAVAID (Question Answer Validated Analytical Inference
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computational approach to music.
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The tabla drumming of North India has become the focusexyerimental research into
percussiorilanguages’ and musical cognition. (The metaphorical usage of ‘language’ for a
musical ‘system’ is paralleled by a litetsdage that refers to the ways in which many drum
musics may be represented with spoken syllablarjng the first major stage of the research
(1983-88) a computer progracalled theBol Processor comprising a special editor and an
inference engine, was designed for a microcomputer portable efayuggldwork on location.
Fragmentary, and sometimes contradictory, information gatheredainatgses of musicians’
performances and their statements alnousical structure was formalised as a knowledge base
of transformational-generativeles. This knowledge base then acted as an initial hypothetical
model of musical structure which was used to analyse performaneed @as generate its own
musical items (represented in syllables) that were assésseplality and accuracy by the
musicians. Informantsinalytical observations were incorporated into the model in order to
correct the machine’s inadequacies d@oadform increasingly valid hypotheses of musical
structure. (For thdullest detailed account of the development and application of the Bol
Processor system, see Kippen and Bel, 1988, 1989.)

A large parbof the tabla repertoire is characterised by improvisation, here taken to mean the
repetition, substitution, and permutation of key stringdraim strokes that can be represented,
convenientlypy verbal symbols (quasi-onomatopoeic mnemonic representations) loaked
that carry no semantimeaning:.dha, ge, ti, na, tirakiteetc. Many thousands of new strings,
or ‘variations’, may be derived from a single given pattern, or ‘theme’; importantly, only a
small proportion of these would be considered musically viable, d@ad smaller number,
sometimes as few as fivwe six and only rarely more than twelve, would be played during the
course of a performance (see Kippen, 1988a, pp.161-68).

Our task has been to generalise a descriptivdel that expresses the underlying procedures
for all possible correct variationddowever, tabla improvisation is not nearly so systematic as
either the literature (se@ottlieb, 1977, pp.53-58, and Sharma, 1981, pp.89-103) or indeed
some musicians have indicated. Apart from stating that a piece has particular tesmploral
vocabular confines, musicians do not tend to verbalise nrgsrocedures (Kippen, 1987,
p.180); andeven when prompted to do so by researchers, most musicians will at best give
incomplete and often ambiguous information about inhib#edguences and chunks of bols
which they perceive to form complete units, or phrases. A tabla playeitsve knowledge of
correct improvisatory procedures is, it appeaesy gradually absorbed over a period of many
years spent both listening to and imitating his teacher, and by being coltdeted little; very
similar, it would appear, to the way in which a child learns a ‘natural’ language.

The methodologicabriority of this research has been to forge a dialectical human-computer
interaction that is fast, efficient, and also sensitive to contekish are familiar to Indian
musicians. Thus duringxperimentation the machine assumed the role of a student, and its
utterances were subject to the musician’s correction and control. This procemsicuéeed
by the analyst who was required to interpret musical information as hypothetical production
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rules that modified the behaviour of the machine. The grammars produtted imay were,
however, unlikely to reflect the full scopé the composition, and so the process was reversed
and a new set of the musician’s variations wabmitted to the machine that was in turn
requested to assess their correctnessnibershipges). Any variations left unrecognised
suggested further generalisationghe grammar. Following a series of work sessions during
which both synthesis and analysis modes were tested in turnreasbaable stability had been
achieved, it was assumed that the grammar was correct.

The Bol Processor was relatively successful as a descriptive and genaateleof musical
structure. This was due to its grammar format, a combination of phrase stardupattern
languages (Bel, 1988b, pp.6-9, Kippen and Bel, 1989). A large nuofb&omplex
compositions in which context sensitivity and complex patterns play an importanvecde
implemented as Bol Processor grammars. Furthermore, the integactoess was generally
satisfactoryand mutually rewarding: analysts gained insights into music while musicians were
stimulated to think and comment in different ways about their mudeakions (see Kippen,
1988b, p.29). On thether hand, some of the initial grammars that were based on incomplete
information andour personal presuppositions could not easily be corrected for two reasons:
firstly, we tended to formalise generalisations at preliminary stages instead of systematically
formalising independent production rules; secondly, tinae no straightforward method for
correcting a given grammar from an examglected by a musician. Although the structure of
compositions could bemplemented relatively easily, the major difficulty lay in defining a
vocabulary (i.e. chunks of symbols or the segmentation of strihgs)vould lead to simple
(and preferably parsimonious) descriptions (regular or context-free grammars).

The success of the Bol Processor as an anlytical tootlwady dependent upon the skill
and intuition of the analysts in makiggneralisations and inferring knowledge without strict
empirical justification. Wherever analysts are themselves convewstinthe musical system
they are studying, the likelihood that they will formalise tlogiin assumptions increases. This
danger must be emphasized as the implications have yet to be fully reahsecdhnesearch, as
evidenced by Baroni, Dalmonte, and Jacoboni (1987) gdaion to have ‘formulated rules
which are not supported by concrete examples in the sample...wadsaveed that the lack of
an explicit example was due #ofortuitous absence in our limited sample rather than to any
structural reasons’.

We have now embarked uparsecond major stage of this research that is partly an attempt
to address the shortcomingsvadrk with the Bol Processor and partly a response to the latest
technical and theoretical developments in knowledge engineering. Ous &nautomate the
process of analysis using a neamputer system in a machine-learning experimental set-up.
We believe that the automation of tihescriptive and analytical processes would not only make
them more empirical, bitiso would promote a more direct interaction between the knowledge
models othe informant and the computer, so minimising the need for analysts to perform the
role of ‘interpreter’.

Grammars as characteristic descriptors of rhythmic compositions

This research centres around the characterisation of sets of sentences represpaossitplail
variations derivedrom a finite number othemes(i.e. certain kinds of tabla compositions,
such agja‘ida, that lend themselves improvisation: see below underodus operandior
further details). Asentencen a (monodic) drumming language is a string of symfiotds)
belonging to an alphabet Vt, includiagspecial symbol ‘-’ that expresses a silence of one time
unit, and, where necessary, symbols that indicate changes of rhythmic density (duple to
time etc.). Each set of variatiorssa formal language, i.e. a subset of Vt*, the set of all finite
strings formed with Vt. Werefer to use the term ‘sentence’ for strings that, it may be
presumed, belong to a formal language, even thdugge strings may not be attributed any
‘meaning’. In this applicatiowe deal withfinite languages because (1) the alphabet is finite,
and (2) all strings have restricted lengths, usually onemiof the metric cycles in which they
are set.
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Given a finite set of sentences that appeaa tabla performance, it is always possible to
assign to it a category so that finite fragmenftthe discourse form mutually exclusive classes.
If a particular class is assigned to non-grammatical strings (‘garBagie’nces), then the set of
classes is a partition of Vt*. In this context, learning may be viewed as a heseatith
through a spacef Boolean descriptorsvith the goal of findingdiscriminant descriptorgor
theclasses. A Boolean descriptor is a function that returns ‘yes’ or ‘no’ when applied to any
object. A descriptor male termed discriminant of a class if it returns ‘yes’ for all objects
belonging to the class and ‘no’ for those belonging to other clasdsé®en all strings are
attributed a class, discriminant descriptors may also be callathcteristic A decidable
grammar G is a typical characteristic Boolean descriptor (also calleccapto) of a language:
it returns ‘yes’ for strings in the language and ‘no’ for other strings. This process isacalled
membership testDecidability implies that the answer may be found after a finite nuofber
computational steps. Languaggsnerated by such grammars are calledursive In the
Chomskian hierarchy of formal languagesjery context-sensitive(type 1 or length
increasing language is recursive (Révész, 1985, pp.94ff). Readrrfamiliar with formal
language theory may wish to consult Révésatsoduction to Formal Languagg4985).

Language identification in the limit: a paradigm for inductive
inference

The problem of finding discriminant descriptors #offinite set of strings partitioned in N
classes can be reduced to N problems of inferriggaenmar from positive (class-belonging)
and negative (non-class-belonging) examples. piesentation protocak typically that ofan
informant the equivalent of aaraclein Al literature (Valiant, 1984, pp.1134-36). It may be
imagined that the informawill spontaneously give negative as well as positive examples
(methodicalinformant), or thahe/she will reject some of the strings uttered by the (human or
mechanicaljearner on the basis of the currently guessed granmaquéstinformant). Gold
(1967, p.467) has established that, given an ordered pesitive and negative examples, any
grammar G belonging to anumerableset of decidablgrammars can belentified in the
limit: for any information sequence the machine will make onfinge numberof wrong
guesses; success consists of eventually offesingorrect guess from which there is no
subsequent deviation. get is enumerable if its elements can be arranged in some sequence
where each element occurs at least once.

In many learning situations, only positive examplessapplied. This presentation protocol
is referred to by Gold (1967, p.450)iasormation by arbitrary text Undersuch conditions,
identification in the limit caronly be achieved for finite languages. Finite languages can be
represented withules in the format ofight-linear (type 3in the Chomskian hierarchy of
folrma_l Ian%uagesgjrammars. One way to formalise regular grammars is to use exclusively
rules in either

X—>a¥Y or Z—>b
format, in whichX, Y, and Z are variables and andb are terminal symbols. Theet of
terminal symbols is the alphabettbé language Vt. Variables, or ‘non-terminal symbols’, are
represented with arbitrary symbdisken from a set Vn. A regular grammar can also be
represented as a finite-state automaton, i.e. a directed graph inXyMchndZ wouldbe state
labels, andh andb transition labels. In other words, to rewiteasay is equivalent tgumping
from stateX to stateY following the transition labelled. The second rule is represented as a
transition fromstateZ to a final state that is also called amptyor acceptingstate of the

automaton:

The state from which all paths originate is label&dhe initial orsentencesymbol inthe
grammar. To analyse string, each of its component symbols (from left to right) is used as a
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‘road sign’. The string is grammatically correct ifitpossible to move fror to an accepting
state following all the road signs.

A grammar may be viewed astheory characterising the seif acceptable sentences;
therefore the learning process may telled descriptive generalisation(learning from
observation) rather thanonceptacquisition (learning from examples) (Michalski, 1983,
pp.90-91).

Part of the research into inductive learning is aimed at defolasges of representations that
can be learned in a realistic sense (Valiant, 1984, BouchandnSallantin, 1988). All
representations can be mapped to positive integers, and most results may therelerged
from numbettheory and theheory of recursive function@lum and Blum, 1975, p.126,
Andler, 1987, p.221, Osherson, Stob and Weinstein, 1986, pp.8-33). Results in thé field
formallanguages have been briefly presented in this section. The other aspect of research,
namely machine-learning, deals with methodologies that are applioadtgineering: problems
that are theoretically solvable mwdso be solved in reasonable time on existing (sequential)
computers. This aspect will be dealt with in the next sections.

Vocabulary and meaning

A striking difference between music andtural languages is that music does not use words
taken in a predefined lexicon, and no semantic ‘meaning’ as suchavaiributed to a musical
sequence. It is therefore delusory to look for a descriptive model of music drasatditive
reductions (see for instance Jackendwffl Lerdahl, 1982, 1983) if it is to be applied to
contexts in which the concepts of word and word sequence are not formally defined.

Although musicians and analysts have intuitive ideas about ‘meaningful’ word sequeaces in
given set of variations, our experience has proved, at least in kylimg, that general
definitions of words faito produce a significant segmentation in the absence of information
specific to the grammar (Bel, 1987a). Segmentation can be appr@schedultistage decision
process, using positional characteristics of symbols in ‘sentences’ (Siromorgy@niio88).

This method works wefor the analysis of a large number of short strings, given the fact that
many of these strings are potential single words. If dateists of a small humber of long
strings then positional characteristics are less relevant (Bel, 1987a) amgtaningful
segmentation must be inferred as a parallel to deep structure.

Learning strategy

A major aim of this research has been to desigmarementallearning strategy under
human control (questions aadswers) by which words and word sequences can be identified
in each specific grammar. Backtracking takes place whenever the infodisagtees with
statements inferred by the machine on the basis of his/her previous decisiansremental
learning, the system does not recompute the entire data set each time a new (@ositive
negative) example is supplied. Our systeas been named ‘QAVAID’ (Question Answer
Validated Analytical Inference Device), an acronym which is derived fittanArabic word
gava'‘id usedin Urdu by many Indian musicians to denote a ‘grammar’ for, or ‘rules’ of,
composition and improvisation (Kippen, 1987, p.180) with the added notion of ‘vocabulary’.

Presupposed knowledge

In QAVAID a small amount of generic knowledge is contained in the semantibeof
description language (i.e. the formatgopdmmars), and the knowledge specific to the grammar
is acquired by the system both from the input data and thrqugstioning. Before the first
example is entered the machine possesses neyimactic nor lexical knowledge. This
approach may be calledrictly incremental the machine attempts to mimic a learning process
using information sequences in exactly the same format in which thepesenitted by experts
to students.



The identification and modelling of a percussion ‘language'... J. Kippen - B. Bel

A very important aspect of this research is our attempt to unveil the process by which a
student ofabla can acquire sufficient knowledge about the implicit grammar of a piece from a
very smallset of positive examples. To this effeshen the learning machine fails to infer
satisfactory descriptions, it is essential to determine empirically how much addimmveledge
would be needed to perform the same task successfully. In the example showmachaer
operandj we endby specifying the exact nature and amount of presupposed (musical)
knowledgethat helps to define the vocabulary of a set of variations in a typical learning
Situation.

‘Tight-fit’ generalisation and specialisation

An incremental learning machine performsganeralisationto accept a new positive
example, or apecialisatiorto reject a negative example. Sinceitifermation sequence from
the musician contains onjyositive examplestéxt presentation protocol), negative examples
are only those produced by the system at the point where the informant is asked tthassess
correctness of the machine’s own productioeg|(est informanpresentation protocol).

Performinga generalisation on a finite-state acceptor amounts to merging some of its states
(seederivedgrammars in Fu and Booth , 1975a, pp.98-99). On the lodmel, specialisations
have no simple computational representation. Thereforéeit gpresentation protocol it is safe
to restrict generalisation toght fit models that generate/recognise exactly the ispguence.
The corresponding algorithm is the following:

|Let A; be the finite-state acceptor recognising exactlythe language formed with
|thei positive examples alreadyalysed by the system. When the (i+1)th example
|&+1 is proposed, let B be the acceptor recognising exaglly eGeneralise Ato
|Ai+1 by merging thdargest possible number of states betwegrad B so that
|Ai+1 recognises exactly;lU {e;+1}. (See Fig.2 below undenodus operandli

If the largest possible number of states are merged then the minaoenplexity of the
description will be obtained.

The specialisation process (Bel, 1988a, 1988b) is informally described as follows:

|Given a finite-state acceptor; Aecognising exactly .. and a negativexample g,
|de|ete and reconstruct paths ipuktil the language recognised is exactly en}.

Inductive inference

Inductive inference is performed by QAVAID the informant presentation protocolthe
machine is required to generate variations not belongirge input examples, and these are
then submitted to the experts for an assessment of their correctnessprotieiss may be
summarised as follows:

|Given a finite-state acceptor;,Amerge statesr construct new paths generating
|'interesting’ strings not recognised by, Avhere ‘interestingdenotes domain
|dependent evaluation procedures.

The actual inference takes place only whdrght-fit generalisation has been performed on a
reasonably large set of examples provided by the expert: through this initial progtess)y

has the machine remembered all examples but it has also made assuraptionhsthe
segmentation of sentences and has inferred a vocabulafgrmal definition of inference in
QAVAID may be found in Bel (1988a, 1988b). The methodology is based on Michalski’s
generaparadigm for inductive inference (1983, pp.88-89) and will be explained briefly under
modus operandielow.
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The modus operandi of QAVAID with reference to a specific
experiment

(a) Entering data and initiating the analysis

What follows is a demonstration of the first steps of the anabysiQAVAID of a set of
variations (improvisations) gathered from the expert tabla player Ustad Afaq HKisamnof
Lucknow in a teaching/demonstration situation (May 1988). This sasepleence is based on
a type of composition generically callgd‘ida, in this case a very well-known piece (read left
to right):

dha ti dha ge na dha tira kita dha ti dha ge dhee na ge na

dha ti dha ge na dha tira kita dha ti dha ge tee na ke na

ta ti ta ke na ta tira kita ta ti ta ke tee na ke na

dha ti dha ge na dha tira kita dha ti dha ge dhee na ge na
This piece is considered by many musicians to offer the widest scopgpfovisation, and its
variations are certainly complex to formalise despite the brevity of the pamenttosition: an
acceptable grammar developed recently comprised nthiessl38 rules (see Kippen and Bel,
1989). Wherea# was possible to represent formally any structure, we failed to find a
systematic way of expressing the set of acceptable permutations, and any identifictten of
piece’s vocabulary proved almost impossible despite thetHattrelatively few bols were in

use. This ledtherefore, to the idea of developing methods for determining regularities in bol
sequences.

In North Indian drumming, there are structural constraints that indicate repetitions and
‘open-closed’ Khula-band patternswhere statements of voiced bols are partly or wholly
transformed into unvoiced statements, eligagedheenagento taketeenakenatc. (See
Kippen ,1987, pp.180-81, and Bel, 198@@&55 for computer representations). It will be
noticed that the second, third, and fourth liok¢his ga‘ida are repetitions of the first, though
in part of the second aradl of the third voiced phonemes are replaced by unvoiced ones. (In
this way, the composition conforms te@ced/unvoiced structure that is implicit in the metric
cycle that governs it.)All that need be known for an appreciation of the current discussion is
that while certain lines are left unaltered, othergramesformed by repetition, substitution, and
permutation.Thus, it will only be necessary to concentrate on altered lines. In the examples
below, tr andkt are shorthand notations fira andkita.

The set of input sentences (altered lines in variations) is the following:
tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na
ti dha tr kt dha dha tr kt dha ti dha ge dhee na ge na
dha tr kt dha ti dha tr kt dha ti dha ge dhee na ge na
dha tr kt dha tr kt dha ge dha ti dha ge dhee na ge na
dha tr kt dha tr kt dha dha dha ti dha ge dhee na ge na
dha tr kt dha ti - dha ti dha ti dha ge dhee na ge na

- dha ti dha dha tr kt dha ti dha ge dhee na ge na
dha ti dha tr kt dha tr kt dha ti dha ge dhee na ge na
. tr kt tr kt dha dha tr kt dha ti dha ge dhee na ge na

10. tr kt dha tr kt dha ge na dha ti dha ge dhee na ge na

The alphabet of symbols recognised by the systdnm,ikt, dha, tj etc.}. The first stages of

grammatical inference are summarised in Figas the starting state amdl1, nil2, etc. the
accepting states of the finite-state acceptor.

“3.00.\‘.@.0".#9’!\’!“
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Take first example:

@ tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na

Take second example:

@ tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na
ti dha tr kt [ha{dhaTtrIt Ihat I_ha IetheeLaLeIa

®

After merging states:

tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na
ktj

ti dha tr

Take third example, etc... Fig.2

Heuristics are used to determihe minimum information that need be added to the finite-state
acceptor in order for the new example to be accepted (Bel, 1988a). The final automaton is:

Fig.3

e

This representation is simplified in the sense that only those states that are (diwgrging
converging) nodes of the graphve been labelled. This suggests an alternative representation
using a ‘two-layer’ acceptor, given in Fig.4:

O O-O—0O0-0 O—0O-0
ge dhati dha ge dhee na g
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dha
O
tr
O
@,
dha
O
e
ti A2 g t @
tr na r
O kt kt ©

o-_dha

dha ti_ dha ge dhee na ge na @ tr @
O—O O O O O O |
tr kt

dha 4 O 7 Kt

9 kt

dha O i .
e 2 dha

ti X
(=) Ch
(b) The grammar generated

The grammar for the two-layer acceptor shown in Fig.4 is the following:
GRAM#1

Fig.4

S—> TE1 Xl XH —> TF4 XB
XI—> TA7 XD XH —> TA3 XC
XD —> TA8 XC —> TE4 XD
XI—> TF1 XJ XC —> TA3 XE
XJ—> TC2 XA XE —> TA1 XD
XA —> TAl1 XB XE —> TC1 XD
XB —> TB3 XD XC —> TB1 XB
XI—> TF1 XG S—> TB1 XF
XG —> TB2 XA XF—> TA1 XJ
S—> TAl1 XH XF—> TD1 XG
GRAM#2

TA7 —> ktdhatrktdhagena TE4 —> ti-dhati
TC2 —> trkt TC1—> ge
TE1 —> tr TB3 —> dhatrkt
TF1 —> kt TA8 —> dhatidhagedheenagena
TF4 —> tidhatrkt TA3 —> trktdha
D1 —> - TB1 —> ti

TB2 —> dhati TA1 —> dha

This grammar is context-free since the right members of most rules in GRAdMEIN two
variables. Here it is split into two regular ‘transformational’ sub-gramo@rgsponding to
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the two automata showim Fig.4. The term ‘transformational’ is borrowed from formal
language theory (Kain, 1981, p.24, Bel ,1987c, p.356), not linguistics.

Inferring a two-layer context-free grammamounts to inferring its equivalent regular
grammar. The difference between the two representatiomadiesin their explanatory power
and formatting than in their properties: two-layer context-free grammarsoanpact and
human-orientedepresentations of finite-state automata. Besides, the inference algorithm in
QAVAID writes the two-layer context-free grammar directly.

(c) The vocabulary

TA7, TC2 etc. denote the vocabulaoy the piece, and rules in GRAM#2 may be called
lexicalrules. Itis interesting to compare this mathematical interpretation of vague cdikeepts
‘word’ and ‘segmentation’ with musical evidence: chunks lilkkt, dhatrkt and
dhatidhagedheenagemaay becalled ‘words’ or ‘sequences of words’ in the sense that they
represent blocks that can be substituted or permuted. However, a ukttifkeever useds a
separate block but mlways preceded byr. Consequently, a block likedhatrktdhagena
should not be thought of as a ‘word sequence’. Furthermithé, the vocabular confines of
this piece, the same principdgplies toge which cannot be conceived of as a separate unit
because it is always part dhage Notwithstanding thisge wasisolated during processing
because the system looked for the longest string commadrktathadha and trktdhage
resulting in trktdha/dha and trktdha/ge A more meaningful split would have been
trkt/dhadhaandtrkt/dhage This confirms that the seardébr a meaningful segmentation
cannot beeduced to a search for the set of the longest common strings in sentences. On the
other hand, it is not easy to make a decision regarding possipieentations ofi-dhati or
trktdha without the wider contexbf adjacent parts of the string. Generally speaking,
musicians are not able to formalise unambiguously the entire lexicon of most compositions.

It may be argued hetbat all one-symbol units, excegha and ‘-’, are not words because
they are not interchangeable (i.e. thegnnot be mutually permuted or substituted). A
constraint designed teject all one-unit words has therefore been implemented in the system.
Thus, in this operational mode (‘chunk’ moddha and ‘- will also be attached to
neighbouring blocks. Applied to the set of ten examples presented dt@vehunk’ mode
led to the following vocabulary

trktdhatrktdhagena

dhatidhatrktdha trkt

ti- tidha
dhati dhatrktdha
ti-dhati dhadha
dhage dheena
dhatidhagedheenagena gena

and the following finite-state acceptor (Fig.5) which may be comparedthath shown in
Fig.3.

10
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In order to assess the validiby this vocabulary in context we may look at the resulting
segmentation of the input data:

1. trkt / dhati / dhadha / trkt / dhatidhagedheenagena
tidha / trkt / dhadha / trkt / dhatidhagedheenagena
dhatrktdha / tidha / trkt / dhatidhagedheenagena
dhatrktdha / trkt / dhage / dhatidhagedheenagena
dhatrktdha / trkt / dhadha / dhatidhagedheenagena
dhatrktdha / ti-dhati / dhatidhagedheenagena
ti- / dhati / dhadha / trkt / dhatidhagedheenagena
dhatidhatrktdha / trkt / dhatidhagedheenagena
. trkt / trkt / dhadha / trkt / dhatidhagedheenagena
10. trktdhatrktdhagena / dhatidhagedheenagena

The segmentation of nearly all sentencesti$ unsatisfactory. Yet the results are not
uninteresting for the very fact that they highlight new problems.inStance, take sentences 4
and 5: the machine has failed to recoguikatrktdhatrktas a repetition adhatrkt If it could
be established thathatrktis a word beginning both sentencé®n this would have important
consequences for the segmentatiosesftences 3 and 6 which begin similarly, and we would
expect the machine to be ableachieve this revised segmentation automatically. If, on the
other hand, the word has not beestablished, then the machine should ask questions to
determine the best possible splitdifatrktdhatidhatrk{example 3) and the other sentences.

(d) The dialogue with QAVAID

Musicians sometimes offer different solutions to the segmentatiothe same string,
solutions arrived at when they shift accentsrigate variety in the musical string of bols. The
segmentation is apparent because the musicians tend to tagirtgems to reinforce the
accentuation of the patterns. The acceptasfc@ne split in preference to another may
potentially lead to differenstructural descriptions later on, although these interpretations are
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bound to converge in the process of inductive generalisatioiff{deelow). For example, the
segmentation of sentence 9 above is acceptable, but it might also be interpreted as

trkt / trktdha / dhatrkt / dhatidhagedheenag@tatrkt / trkt / dhadhatrkt / dhatidhagedheenagena

with equal justification. Should tleystem be designed to handle such ambiguity? So far this
has not been considered necessary in view of the adoption oftritegy that if the
segmentation of a block is ambiguous in all posgsiblgexts, then this block should remain an
indivisable unit (a ‘word’).

The machine is also required to make decisions regarding ‘specific paths’, anditigs it
by questioning. As each new examplentsoduced, the part of the sentence which represents
the ‘new information’ is displayed.Owing to the systematic nature of the information
sequence, experts are intuitively aware of that information.

In the dialogue witlQAVAID, an alternative answer to ‘yes’ exists in the ‘optional yes’
which requests the system to try to proceed. However, the system mayuponvéh
unacceptable proposals when explotiing consequences of this option. Answering ‘no’ to a
question forces thesystem to backtrack. Backtracking to a ‘try’ decision results in
retrospectively replacing the ‘try’ with the ‘no’ option. If all questionsaa®vered with ‘no’,
the system continues to backtrack untily the starting and final states can be merged (see
Fig.2 above). In this case, the whole sentence is taken as ‘new’ information.

Below isan illustration of the dialogue established with the machine during the analysis of
the ten examples:

[1] >> trktdhatidhadhatrktdhatidhagedheenagena

Specific path: /trktdhatidhadhatrktdhatidhagedheenagena/
Accept? Y)es N)o....Y

[2] >> tidhatrktdhadhatrktdhatidhagedheenagena

? trktdhati/dhadhatrktdhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /tidhatrkt/dhadhatrktdhatidhagedheenagena
Accept? Y)es N)o....Y

[3] >> dhatrktdhatidhatrktdhatidhagedheenagena

? dhadha/trktdhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /dhatrktdhatidha/trktdhatidhagedheenagena
Accept? Y)es N)o....N

? dhadhatr/ktdhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....N

? trkt/dhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /dhatrktdhatidhatrkt/dhatidhagedheenagena
Accept? Y)es N)o....Y

[4] >> dhatrktdhatrktdhagedhatidhagedheenagena

? dhatrktdha/tidha

Y)es N)o T)ry R)eturn to preceding choice....N

? dhatrktdha/tidhatrkt

Y)es N)o T)ry R)eturn to preceding choice....N

? dhatrkt/dhatidha

Y)es N)o T)ry R)eturn to preceding choice....N

? dhatrkt/dhatidhatrkt
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Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrkt/dhatrktdhage/dhatidhagedheenagena
Accept? Y)es N)o....Y

[5] >> dhatrktdhatrktdhadhadhatidhagedheenagena

? dhatrkt/dhage

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrktdhatrkt/dhadha/dhatidhagedheenagena
[6] >> dhatrktdhati-dhatidhatidhagedheenagena

? dhati/dhatrkt

Y )es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrktdhati/-dhati/dhatidhagedheenagena
Accept? Y)es N)o....N

? dhati/dhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrktdhati/-dhatidhati/dhagedheenagena
Accept? Y)es N)o....N

Specific path: dhatrkt/dhati-dhati/dhatidhagedheenagena
Accept? Y)es N)o....Y

[7] >> ti-dhatidhadhatrktdhatidhagedheenagena

Specific path: /ti-/dhatidhadhatrktdhatidhagedheenagena
Accept? Y)es N)o....Y

[8] >> dhatidhatrktdhatrktdhatidhagedheenagena

Specific path: /dhatidhatrkt/dhatrktdhatidhagedheenagena
[9] >> trkitrktdhadhatrktdhatidhagedheenagena

? tidha/trkt

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /trkt/trktdhadhatrktdhatidhagedheenagena
[10] >> trktdhatrktdhagenadhatidhagedheenagena
Specific path: /trktdhatrktdhagena/dhatidhagedheenagena
Accept? Y)es N)o....Y

One of the most interesting features of the dialogue is the backtracking relaianiple 3.
The machine’s first attempt to segment the string results in a specifithpatisolates arkt
from adha In view of the string’s inherent symmetry of tabatrktseparated by dhati this
appears unsatisfactory. In consequence, ‘neétisrned. Further questioning establishes
nothing more than a correct specific path recognising the variable phet sfring and splitting
it from the cadence common to all examples. The machine seeks tlatiferation during the
analysis of examples 4 and &nd several ‘no’ decisions are returned before a correct
segmentation is reached.

Following the analysis, the resulting segmentation of the input data is:
1. trkt / dhati / dhadhatrkt / dhatidhagedheenagena

tidha / trkt / dhadhatrkt / dhatidhagedheenagena

dhatrkt / dhati / dhatrkt / dhatidhagedheenagena

dhatrkt / dhatrkt / dhage / dhatidhagedheenagena

dhatrkt / dhatrkt / dhadha / dhatidhagedheenagena

dhatrkt / dhati-dhati / dhatidhagedheenagena

ti- / dhati / dhadhatrkt / dhatidhagedheenagena

No o s wN
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8. dhatidhatrkt / dhatrkt / dhatidhagedheenagena

9. trkt/ trkt / dhadhatrkt / dhatidhagedheenagena

10. trktdhatrktdhagena / dhatidhagedheenagena

Knowledge on vocabulary is stored in the following format:

Recognised words: Correct splits:

tidha / trkt
trktdhatrktdhagena dhati / dhagedheenagena
tidha dhati / dhatrkt
dhatidhatrkt dhatrkt / dhage
ti- dhatrkt / dhatidhatrkt
dhati-dhati trkt / dhatidhagedheenagena
dhagedheenagena dhadha / trktdhatidhagedheenagena
dhati trktdhati / dhadhatrktdhatidhagedheenagena
dhage
dhatrkt Incorrect splits:
dhadhatrkt dhatrkt / dhatidha
dhatidhagedheenagena dhatrktdha / tidhatrkt
trkt dhatrktdha / tidha
trktdhatidhagedheenagena dhadhatr / ktdhatidhagedheenagena
dhadha

(e) Inferring complete segmentation

The machine can be requested to check whetheotosmaller significant chunks may be
found in the inputata, thereby completing the structural description of the input sequence.
This leads to the following dialogue:

split dhatrkt / dhagena ? Yes

split dhati / -dhati ? No

split dhati- / dhati ? No

split dhage / dheenagena ? No
and to the segmentation:

1. trkt / dhati / dhadha / trkt / dhati / dhagedheenagena
tidha / trkt / dhadha / trkt / dhati / dhagedheenagena
dhatrkt / dhati / dhatrkt / dhati / dhagedheenagena
dhatrkt / dhatrkt / dhage / dhati / dhagedheenagena
dhatrkt / dhatrkt / dhadha / dhati / dhagedheenagena
dhatrkt / dhati-dhati / dhati / dhagedheenagena

ti- / dhati / dhadha / trkt / dhati / dhagedheenagena
dhatidhatrkt / dhatrkt / dhati / dhagedheenagena

. trkt / trkt / dhadha / trkt / dhati / dhagedheenagena
10. trkt / dhatrkt / dhagena / dhati / dhagedheenagena

Here the system has sgiihati /dhagedheenagenan the basis of a decision taken during
the analysi®f item 6 above. Nevertheless this sequence is known to be a common suffix to
each sentence this ga‘'ida. Therefore, any generalisation tending to modify it is likely to be
irrelevant. To cut the search space of generalisations, it is possible to instruct the machine to
relink dhati and dhagedheenagenaSegmentation iseversible since it does not alter the
original finite-state acceptor. Once the segmentation process has been invoked, it is
automatically re-activated each time a new positive example is entered.

“390.\‘.0"91:“90!\’
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Segmentation malye viewed as inferring syntactic knowledge: labelling particular states in
the finite-state acceptor. Labelled states are eligible to have newbpatithing from them, or
they may be merged in a generalisation process. In segmentaiaal knowledge is
modified. For instance a new wordhagena hasbeen inferred, and expressions like
trktdhatrktdhagenahat appear as sequences of words have been deleted from the lexicon.

(f) Generalising the grammar
The grammar given below is the outcome of the processes described Bbotke sake of
clarity, the system has relabelled the states (variables) appending numbespréseint their

durations. For exampl&A10is always derived as a stringgaffix sequence) of ten terminal
symbols.

GRAM#1

S —> TA3 SA13 S — TB2 SCi4
SA13 —> TA3 SAl0 SC14 —> TA3 SAll
SA10 —> TC2 SAS8 SA11 —> TB3 SAS8
SA8 —> TD2 SA6 S —> TD2 SDi4
SA6 —> TAG6 SD14 —> TA3 SB11
SA10 —> TA2 SAS8

SA13 —> TC5 SAS8 GRAM#2

SA13 —> TD2 SB11 TB3 —> dhagena
SB11 —> TA3 SAS8 TF2 —> tidha

S —> TB2 SAl4 TE2 —> ti-

SAl14 —> TD2 SAl12 TC5 —> dhati-dhati
SA12 —> TA2 SB10 TA6 —> dhagedheenagena
SB10 —> TB2 SA8 TD2 —> dhati

S — TE2 SAl4 TC2 —> dhage

S — TF2 SB14 TA3 —> dhatrkt
SB14 —> TB2 SAl2 TB2 —> trkt

S —> TB2 SB14 TA2 —> dhadha

Space limitations prevent us from showing in full detailititeraction between the expert
and the machine. In brief, QAVAID tries to enlist states thay be merged or connected with
newpaths. Domain-dependent knowledge limits the number of states to be considered: since
all sentences must be of the same duration,states are eligible only if they denote suffix
sequences of equal duratioria.the grammar above, the state mergings to be considered are:
SAl1l = SB11, SD14 = SA14, SD14 = SB14, SD14 = SC14, SB10 =s8ABA14 = SB14
= SC14 The last merging will be considered first due to the three production rules

S — TB2 SA14
S — TB2 SB14
S — TB2 SC14

that make it reasonable suppose that suffix sequences derived f@&i4 SB14 and SC14
may be similar as their prefikB2 is identical. QAVAID also determingsairs of states that
may be connected via new paths using the known vocabuldnig. amounts to substituting or
permuting words of equal lengths such akt / dhati / ti- / tidha / dhage / dhadhand
dhatrkt / dhagena Thus, using backgrounkinowledge, the search space for possible
generalisations is considerably reducedly 8 out of 132 pairs of states will be examined,
among which three are considered more significant.

The most practical methodology for generalising a grammar is to allow the macbimoge
a possible generalisation at random and generate the next pessiat®on. The variation is
then assessed to be either correct or incorrect by the informant, and the pemgessagain.
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If, after some time, no further variation may be produced by a selected generalibation,
machine will suggedghat the generalisation be validated. It is important to use a stochastic
process in synthesis: if variations were to be enumeratestiitidy systematic order musicians
would quickly lose interest in the experiment.

(g) Random music synthesis and the probabilistic model

Music synthesis in QAVAID may be enumerative (producing all variatiomsa
predeterminearder) or stochastic (producing at random one variation at a time). Random
synthesis can reflect the probability @fcurrence of sentences in the sample sequence from
which the grammar was inferred. To achieve thisjghtsare assigned to productiounles.

These can be used by the systermaimputerule probabilities The probabilistic model used

in QAVAID is the same as in the Bol Processor (Kippen and Bel, 1988a) and in probabilistic
grammars (Bootland Thompson, 1973), and the algorithm for inferring weights is similar to
that proposed by Maryanski and Booth (1977, pp.525-26). Rule weightbenaigwed as
flows on thedirected graph representing the corresponding finite-state acceptor. Therefore,
inferring weights amounts to reinforcing paths that are used more frequently.

In synthesis filters can be set to select sentemsedisfying properties expressed in
statements such afr example, ‘a sentence that has a repeated pattern longer than four
symbols and which does not contdimagena

Limitations of the present implementation and scope for research

During thecourse of this research, we have often been asked whether or not a machine
(indeed, our machine) might ever reproduce do@lity of composition or improvisation
expected of human experts. The assumption behind this quisstiat there is an indefinable
‘something else’, an extra ‘je ne sais quoi’ that turns ‘corretdcoeptable’ music into ‘great’
music or an ordinary composer into a Bach, Mozart, or Beethovenunitleglying implication
is that a machine is not capable of ‘genius’. It isowt intention to desanctify genius, but
with regard to the musical system under investigatiomole that a number of musical effects
that could be thoughtf as representative of high-quality composition may be analysed a
posteriori in terms of, for instance, meta-patterns or polyrhyteffécts. Indeed these effects
can be programmed in synthesis, but they cannot be learned by our system.

We believe, therefore, that itésucial to devote time and energy to refining models of non
rigorous reasoning (principally induction and analogy) that serve as heurisicaightforward
language identification. At the moment, the grammars inférozd positive examples are tight
fits to the sequence, and the inductive process itself is activated on the basisngblete
structural description of the input sequentre forthcoming versions, QAVAID will search for
‘relevant’ regularities in the input sequenesd start hypothesizing generalisations while
positive examples are still being analysed. This is similar to the behavioumbélagent pupil
who tries to predict a theory even before all facts are known to him/her.

At a higher level, the machine should be ablenfer knowledge from the order in which
musical examples are supplied, especially in demonstration/concert situations; this would
amounto describingsequencesather than unordered sets of sentences. The machine would
thenbe able to construct meaningful sequences of variations in the same way sentences are
ordered and linked in a discourse. This problem may be viased variant of sequence
extrapolation (Blum and Blum, 1975, p.126) in which the predictsomon-deterministic
(Dietterich and Michalski, 1986, p.65).

Increasinghe prediction power of QAVAID will inevitably mean considering larger sets of
hypotheses, thus requiring more computation time and memory space.prdibg/pe of
QAVAID has been written in Prolog I, and is currently implemereda Macintosh computer.
Running the analysis of the ten examples shown above takes alsmgotttls on a Mac Il. In
developing more advanced versions we may use Prolog I+, a much faster géRratog I,
or ICON, both of whicltan be operated under MPW on Macintosh with hard disk. It should
be kept in mind that the main feature@AVAID is its dialogue with informants which enables
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the system to gather information about the doraanh validate its hypotheses in an incremental
learning situation. Once validated, hypotheses become part fdptesentational model (the
grammar or finite-state acceptor) and therefordacktracking is needed. In a similar way,
QAVAID deletes each input sentence as soon as it has been used to update the grammar.

Limitations of a cognitive model of music

There area number of very important aspects of musical ‘behaviour’ that are not taken into
account in this studyOne is the perception of time within a set metric pattern. Improvisation
is, of course, performed in real time, and therefore a tabla musician must beawasegiven
moment, of the amount of time left to him andled different methods at his disposal to chunk
words together thll precisely that amount of time in some meaningful way (Bel and Kippen,
1988). Complexcalculations are often made with a rapidity that suggests musicians do not
consciously calculate but rather rely on a kingafieptic leap to a solution. Nevertheless, the
decision amusician makes can be simulated arithmetically, a process that is normally not
captured in a model based on symbolic representations.

This example points to the question of the psychological validitgoghitive models of
music. Many studies in ‘classicditificial Intelligence, and indeed this one, are based on the
paradigm thatcognition is computational thereby placingemphasis omreasoning prior to
perception, the latter being seen as a particular case of the former (Barr, [h983¢h a view,
perception is considered formalisable and symbolic, whereas the learning proedssiige to
serial computation. The approach that has emerged from the neurosciences spxemfm:ally
connectionism, takes precisely the opposite view: emphagiaced onperception i.e.
recognition, dlscrlmlnatlon classification, and associatignereas reasoning and symbolic
representations are seen as emerging &anentalstatewhich is itself the result of stochastic
interactions in a homogenous (unstructured) netwonknds of memory formal neuronegs
This process has been termed ‘subcognitiorososed to ‘cognition’ by Hofstadter (1985,
p.659). Connectionist networks have proved efficient in achieving complex tasks, some of
which (e.g. fundamental pitch extraction of complex tones) are associatedmwsical
concepts.lt is expected that there will be a formidable expansion of this field of research and
applications while new machines based on asynchronous parallelism aredbegigped.
Indeed, we are far from being alite model, let alone understand, ‘subcognitive’ aspects of
music improvisation. But we also feel that it would be far-fet¢bdakelieve that new machines
will solve theproblem on the basis of their structural resemblance to parts of real brains. Our
feeling, therefore, is that attempts to model mushmthaviour’ (improvisation, perception, and
evaluation) will for some tim& come continue to rely on the patient identification of concepts
that are not pre-framed in a verbal description.

Conclusion

Experimental ethnomusicology has the potential to plsigrificant role in the development
of new methods for the transfer of knowledge to computecause it deals with implicit
(unformulated) models based on data whiafuantified, bounded, and to some extent related
and consistent. In North Indian drummititg data is quantified with limited sets of symbols
(the alphabet), languages are finite (bounbedhe metre), language identification is related
(each sentences unambiguously assigned a parent theme from which it is derived), and
musicians decisions in given contesetain some kind of reliability (consistence). This paper
hasattempted to show that these properties make it possible to implement methods derived
fromthe formal theory of inductive learning with the aid of algorithms that are computable in
realistic time on existing machines.

At this stage, our projedtas started focussing more on the behaviour of informants and
human/machine learners than on the contérthe knowledge that is transmitted in teaching
situations. In the same wahat the Bol Processor was demonstrated to be useful in
formalising some aspects of music productod evaluation, we expect that QAVAID will be
helpful in describing some of the stages of the transfer of knowledge in the same context.
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