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Abstract

In experimental research into percussion ‘languages’, an interactive computer
system, the Bol Processor, has been developed by the authors to analyse the
performances of expert musicians and generate its own musical items that were assessed
for quality and accuracy by the informants.  The problem of transferring knowledge from
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grammatical inferencer named QAVAID (Question Answer Validated Analytical Inference
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The tabla drumming of North India has become the focus of experimental research into
percussion ‘languages’ and musical cognition.  (The metaphorical usage of ‘language’ for a
musical ‘system’ is paralleled by a literal usage that refers to the ways in which many drum
musics may be represented with spoken syllables.)  During the first major stage of the research
(1983-88) a computer program called the Bol Processor, comprising a special editor and an
inference engine, was designed for a microcomputer portable enough for fieldwork on location.
Fragmentary, and sometimes contradictory, information gathered from analyses of musicians’
performances and their statements about musical structure was formalised as a knowledge base
of transformational-generative rules.  This knowledge base then acted as an initial hypothetical
model of musical structure which was used to analyse performances as well as generate its own
musical items (represented in syllables) that were assessed for quality and accuracy by the
musicians.  Informants’ analytical observations were incorporated into the model in order to
correct the machine’s inadequacies and to form increasingly valid hypotheses of musical
structure.  (For the fullest detailed account of the development and application of the Bol
Processor system, see Kippen and Bel, 1988, 1989.)

A large part of the tabla repertoire is characterised by improvisation, here taken to mean the
repetition, substitution, and permutation of key strings of drum strokes that can be represented,
conveniently, by verbal symbols (quasi-onomatopoeic mnemonic representations) called bols
that carry no semantic meaning: dha, ge, ti, na, tirakita etc.  Many thousands of new strings,
or ‘variations’, may be derived from a single given pattern, or ‘theme’; importantly, only a
small proportion of these would be considered musically viable, and a far smaller number,
sometimes as few as five or six and only rarely more than twelve, would be played during the
course of a performance (see Kippen, 1988a, pp.161-68).

Our task has been to generalise a descriptive model that expresses the underlying procedures
for all possible correct variations.  However, tabla improvisation is not nearly so systematic as
either the literature (see Gottlieb, 1977, pp.53-58, and Sharma, 1981, pp.89-103) or indeed
some musicians have indicated.  Apart from stating that a piece has particular temporal and
vocabular confines, musicians do not tend to verbalise rules or procedures (Kippen, 1987,
p.180); and even when prompted to do so by researchers, most musicians will at best give
incomplete and often ambiguous information about inhibited sequences and chunks of bols
which they perceive to form complete units, or phrases.  A tabla player’s intuitive knowledge of
correct improvisatory procedures is, it appears, very gradually absorbed over a period of many
years spent both listening to and imitating his teacher, and by being corrected little by little; very
similar, it would appear, to the way in which a child learns a ‘natural’ language.

The methodological priority of this research has been to forge a dialectical human-computer
interaction that is fast, efficient, and also sensitive to contexts which are familiar to Indian
musicians.  Thus during experimentation the machine assumed the role of a student, and its
utterances were subject to the musician’s correction and control.  This process was articulated
by the analyst who was required to interpret musical information as hypothetical production
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rules that modified the behaviour of the machine.  The grammars produced in this way were,
however, unlikely to reflect the full scope of the composition, and so the process was reversed
and a new set of the musician’s variations was submitted to the machine that was in turn
requested to assess their correctness (membership test).  Any variations left unrecognised
suggested further generalisations of the grammar.  Following a series of work sessions during
which both synthesis and analysis modes were tested in turn and a reasonable stability had been
achieved, it was assumed that the grammar was correct.

The Bol Processor was relatively successful as a descriptive and generative model of musical
structure.  This was due to its grammar format, a combination of phrase structure and pattern
languages (Bel, 1988b, pp.6-9, Kippen and Bel, 1989).  A large number of complex
compositions in which context sensitivity and complex patterns play an important role were
implemented as Bol Processor grammars.  Furthermore, the interactive process was generally
satisfactory and mutually rewarding: analysts gained insights into music while musicians were
stimulated to think and comment in different ways about their musical decisions (see Kippen,
1988b, p.29).  On the other hand, some of the initial grammars that were based on incomplete
information and our personal presuppositions could not easily be corrected for two reasons:
firstly, we tended to formalise generalisations at preliminary stages instead of systematically
formalising independent production rules; secondly, there was no straightforward method for
correcting a given grammar from an example rejected by a musician.  Although the structure of
compositions could be implemented relatively easily, the major difficulty lay in defining a
vocabulary (i.e. chunks of symbols or the segmentation of strings) that would lead to simple
(and preferably parsimonious) descriptions (regular or context-free grammars).

The success of the Bol Processor as an anlytical tool was clearly dependent upon the skill
and intuition of the analysts in making generalisations and inferring knowledge without strict
empirical justification.  Wherever analysts are themselves conversant with the musical system
they are studying, the likelihood that they will formalise their own assumptions increases.  This
danger must be emphasized as the implications have yet to be fully realised in much research, as
evidenced by Baroni, Dalmonte, and Jacoboni (1987) who claim to have ‘formulated rules
which are not supported by concrete examples in the sample...we have assumed that the lack of
an explicit example was due to a fortuitous absence in our limited sample rather than to any
structural reasons’.

We have now embarked upon a second major stage of this research that is partly an attempt
to address the shortcomings of work with the Bol Processor and partly a response to the latest
technical and theoretical developments in knowledge engineering.  Our aim is to automate the
process of analysis using a new computer system in a machine-learning experimental set-up.
We believe that the automation of the descriptive and analytical processes would not only make
them more empirical, but also would promote a more direct interaction between the knowledge
models of the informant and the computer, so minimising the need for analysts to perform the
role of ‘interpreter’.

Grammars as characteristic descriptors of rhythmic compositions
This research centres around the characterisation of sets of sentences representing all possible

variations derived from a finite number of themes (i.e. certain kinds of tabla compositions,
such as qa‘ida, that lend themselves to improvisation: see below under modus operandi for
further details).  A sentence in a (monodic) drumming language is a string of symbols (bols)
belonging to an alphabet Vt, including a special symbol ‘-’ that expresses a silence of one time
unit, and, where necessary, symbols that indicate changes of rhythmic density (duple to triple
time etc.).  Each set of variations is a formal language, i.e. a subset of Vt*, the set of all finite
strings formed with Vt.  We prefer to use the term ‘sentence’ for strings that, it may be
presumed, belong to a formal language, even though those strings may not be attributed any
‘meaning’.  In this application we deal with finite languages because (1) the alphabet is finite,
and (2) all strings have restricted lengths, usually one or two of the metric cycles in which they
are set.

3



The identification and modelling of a percussion 'language'...  J. Kippen - B. Bel

Given a finite set of sentences that appear in a tabla performance, it is always possible to
assign to it a category so that finite fragments of the discourse form mutually exclusive classes.
If a particular class is assigned to non-grammatical strings (‘garbage’ sentences), then the set of
classes is a partition of Vt*.  In this context, learning may be viewed as a heuristic search
through a space of Boolean descriptors with the goal of finding discriminant descriptors for
the classes.  A Boolean descriptor is a function that returns ‘yes’ or ‘no’ when applied to any
object.  A descriptor may be termed discriminant of a class if it returns ‘yes’ for all objects
belonging to the class and ‘no’ for those belonging to other classes.  When all strings are
attributed a class, discriminant descriptors may also be called characteristic.  A decidable
grammar G is a typical characteristic Boolean descriptor (also called an acceptor) of a language:
it returns ‘yes’ for strings in the language and ‘no’ for other strings.  This process is called a
membership test.  Decidability implies that the answer may be found after a finite number of
computational steps.  Languages generated by such grammars are called recursive. In the
Chomskian hierarchy of formal languages, every context-sensitive (type 1 or length-
increasing) language is recursive (Révész, 1985, pp.94ff).  Readers not familiar with formal
language theory may wish to consult Révész’s Introduction to Formal Languages (1985).

Language identification in the limit: a paradigm for inductive
inference

The problem of finding discriminant descriptors for a finite set of strings partitioned in N
classes can be reduced to N problems of inferring a grammar from positive (class-belonging)
and negative (non-class-belonging) examples.  This presentation protocol is typically that of an
informant, the equivalent of an oracle in AI literature (Valiant, 1984, pp.1134-36).  It may be
imagined that the informant will spontaneously give negative as well as positive examples
(methodical informant), or that he/she will reject some of the strings uttered by the (human or
mechanical) learner on the basis of the currently guessed grammar (request informant).  Gold
(1967, p.467) has established that, given an ordered set of positive and negative examples, any
grammar G belonging to an enumerable set of decidable grammars can be identified in the
limit: for any information sequence the machine will make only a finite number of wrong
guesses; success consists of eventually offering a correct guess from which there is no
subsequent deviation. A set is enumerable if its elements can be arranged in some sequence
where each element occurs at least once.

In many learning situations, only positive examples are supplied.  This presentation protocol
is referred to by Gold (1967, p.450) as information by arbitrary text.  Under such conditions,
identification in the limit can only be achieved for finite languages.  Finite languages can be
represented with rules in the format of right-linear  (type 3 in the Chomskian hierarchy of
formal languages) grammars.  One way to formalise regular grammars is to use exclusively
rules in either

X—> a Y or Z—> b

format, in which X, Y, and Z are variables and a and b are terminal symbols.  The set of
terminal symbols is the alphabet of the language Vt.  Variables, or ‘non-terminal symbols’, are
represented with arbitrary symbols taken from a set Vn.  A regular grammar can also be
represented as a finite-state automaton, i.e. a directed graph in which X, Y, and Z would be state
labels, and a and b transition labels.  In other words, to rewrite X as aY is equivalent to jumping
from state X to state Y following the transition labelled a.  The second rule is represented as a
transition from state Z to a final state that is also called an empty or accepting state of the
automaton:

X Y Z nil
ba

Fig.1

The state from which all paths originate is labelled S, the initial or sentence symbol in the
grammar.  To analyse a string, each of its component symbols (from left to right) is used as a
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‘road sign’.  The string is grammatically correct if it is possible to move from S to an accepting
state following all the road signs.

A grammar may be viewed as a theory characterising the set of acceptable sentences;
therefore the learning process may be called descriptive generalisation (learning from
observation) rather than concept acquisition (learning from examples) (Michalski, 1983,
pp.90-91).

Part of the research into inductive learning is aimed at defining classes of representations that
can be learned in a realistic sense (Valiant, 1984, Boucheron and Sallantin, 1988).  All
representations can be mapped to positive integers, and most results may therefore be derived
from number theory and the theory of recursive functions (Blum and Blum, 1975, p.126,
Andler, 1987, p.221, Osherson, Stob and Weinstein, 1986, pp.8-33).  Results in the field of
formal languages have been briefly presented in this section.  The other aspect of research,
namely machine-learning, deals with methodologies that are applicable to engineering: problems
that are theoretically solvable must also be solved in reasonable time on existing (sequential)
computers.  This aspect will be dealt with in the next sections.

Vocabulary and meaning
A striking difference between music and natural languages is that music does not use words

taken in a predefined lexicon, and no semantic ‘meaning’ as such may be attributed to a musical
sequence.  It is therefore delusory to look for a descriptive model of music based on intuitive
reductions (see for instance Jackendoff and Lerdahl, 1982, 1983) if it is to be applied to
contexts in which the concepts of word and word sequence are not formally defined.

Although musicians and analysts have intuitive ideas about ‘meaningful’ word sequences in a
given set of variations, our experience has proved, at least in tabla playing, that general
definitions of words fail to produce a significant segmentation in the absence of information
specific to the grammar (Bel, 1987a).  Segmentation can be approached as a multistage decision
process, using positional characteristics of symbols in ‘sentences’ (Siromoney and Huq, 1988).
This method works well for the analysis of a large number of short strings, given the fact that
many of these strings are potential single words.  If data consists of a small number of long
strings then positional characteristics are less relevant (Bel, 1987a) and a meaningful
segmentation must be inferred as a parallel to deep structure.

Learning strategy
A major aim of this research has been to design an incremental learning strategy under

human control (questions and answers) by which words and word sequences can be identified
in each specific grammar.  Backtracking takes place whenever the informant disagrees with
statements inferred by the machine on the basis of his/her previous decisions.  In incremental
learning, the system does not recompute the entire data set each time a new (positive or
negative) example is supplied.  Our system has been named ‘QAVAID’ (Question Answer
Validated Analytical Inference Device), an acronym which is derived from the Arabic word
qava‘id  used in Urdu by many Indian musicians to denote a ‘grammar’ for, or ‘rules’ of,
composition and improvisation (Kippen, 1987, p.180) with the added notion of ‘vocabulary’.

Presupposed knowledge
In QAVAID a small amount of generic knowledge is contained in the semantic of the

description language (i.e. the format of grammars), and the knowledge specific to the grammar
is acquired by the system both from the input data and through questioning.  Before the first
example is entered the machine possesses neither syntactic nor lexical knowledge.  This
approach may be called strictly incremental: the machine attempts to mimic a learning process
using information sequences in exactly the same format in which they are transmitted by experts
to students.
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A very important aspect of this research is our attempt to unveil the process by which a
student of tabla can acquire sufficient knowledge about the implicit grammar of a piece from a
very small set of positive examples.  To this effect, when the learning machine fails to infer
satisfactory descriptions, it is essential to determine empirically how much additional knowledge
would be needed to perform the same task successfully.  In the example shown under modus
operandi, we end by specifying the exact nature and amount of presupposed (musical)
knowledge that helps to define the vocabulary of a set of variations in a typical learning
situation.

‘Tight-fit’ generalisation and specialisation
An incremental learning machine performs a generalisation to accept a new positive

example, or a specialisation to reject a negative example.  Since the information sequence from
the musician contains only positive examples (text presentation protocol), negative examples
are only those produced by the system at the point where the informant is asked to assess the
correctness of the machine’s own productions (request informant presentation protocol).

Performing a generalisation on a finite-state acceptor amounts to merging some of its states
(see derived grammars in Fu and Booth , 1975a, pp.98-99).  On the other hand, specialisations
have no simple computational representation.  Therefore in a text presentation protocol it is safe
to restrict generalisation to tight fit models that generate/recognise exactly the input sequence.
The corresponding algorithm is the following:

Let Ai be the finite-state acceptor recognising exactly Li, the language formed with
the i  positive examples already analysed by the system.  When the (i+1)th example
ei+1 is proposed, let B be the acceptor recognising exactly ei+1.  Generalise Ai to
Ai+1 by merging the largest possible number of states between Ai and B so that
Ai+1 recognises exactly Li U {ei+1}.  (See Fig.2 below under modus operandi)

If the largest possible number of states are merged then the minimum complexity of the
description will be obtained.

The specialisation process (Bel, 1988a, 1988b) is informally described as follows:
Given a finite-state acceptor Ai recognising exactly Li, and a negative example en,
delete and reconstruct paths in Ai until the language recognised is exactly Li - {en}.

Inductive inference
Inductive inference is performed by QAVAID in the informant presentation protocol: the

machine is required to generate variations not belonging to the input examples, and these are
then submitted to the experts for an assessment of their correctness.  This process may be
summarised as follows:

Given a finite-state acceptor Ai, merge states or construct new paths generating
‘interesting’ strings not recognised by Ai, where ‘interesting’ denotes domain-
dependent evaluation procedures.

The actual inference takes place only when a tight-fit generalisation has been performed on a
reasonably large set of examples provided by the expert: through this initial process, not only
has the machine remembered all examples but it has also made assumptions about the
segmentation of sentences and has inferred a vocabulary.  A formal definition of inference in
QAVAID may be found in Bel (1988a, 1988b).  The methodology is based on Michalski’s
general paradigm for inductive inference (1983, pp.88-89) and will be explained briefly under
modus operandi below.
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The modus operandi of QAVAID with reference to a specific
experiment

(a) Entering data and initiating the analysis
What follows is a demonstration of the first steps of the analysis by QAVAID of a set of

variations (improvisations) gathered from the expert tabla player Ustad Afaq Husain Khan of
Lucknow in a teaching/demonstration situation (May 1988).  This sample sequence is based on
a type of composition generically called qa‘ida, in this case a very well-known piece (read left
to right):

dha ti dha ge na dha tira kita dha ti dha ge dhee na ge na

dha ti dha ge na dha tira kita dha ti dha ge tee na ke na

ta ti ta ke na ta tira kita ta ti ta ke tee na ke na

dha ti dha ge na dha tira kita dha ti dha ge dhee na ge na

This piece is considered by many musicians to offer the widest scope for improvisation, and its
variations are certainly complex to formalise despite the brevity of the parent composition: an
acceptable grammar developed recently comprised no less than 138 rules (see Kippen and Bel,
1989).  Whereas it was possible to represent formally any structure, we failed to find a
systematic way of expressing the set of acceptable permutations, and any identification of the
piece’s vocabulary proved almost impossible despite the fact that relatively few bols were in
use.  This led, therefore, to the idea of developing methods for determining regularities in bol
sequences.

In North Indian drumming, there are structural constraints that indicate repetitions and
‘open-closed’ (khula-band) patterns where statements of voiced bols are partly or wholly
transformed into unvoiced statements, e.g. dhagedheenagena to taketeenakena etc.  (See
Kippen ,1987, pp.180-81, and Bel, 1987c, p.355 for computer representations).  It will be
noticed that the second, third, and fourth lines of this qa‘ida are repetitions of the first, though
in part of the second and all of the third voiced phonemes are replaced by unvoiced ones.  (In
this way, the composition conforms to a voiced/unvoiced structure that is implicit in the metric
cycle that governs it.)  All that need be known for an appreciation of the current discussion is
that while certain lines are left unaltered, others are transformed by repetition, substitution, and
permutation.  Thus, it will only be necessary to concentrate on altered lines.  In the examples
below, tr and kt are shorthand notations for tira  and kita.

The set of input sentences (altered lines in variations) is the following:
1.  tr kt dha ti dha dha tr kt dha ti dha ge dhee na ge na

2.  ti dha tr kt dha dha tr kt dha ti dha ge dhee na ge na

3.  dha tr kt dha ti dha tr kt dha ti dha ge dhee na ge na

4.  dha tr kt dha tr kt dha ge dha ti dha ge dhee na ge na

5.  dha tr kt dha tr kt dha dha dha ti dha ge dhee na ge na

6.  dha tr kt dha ti - dha ti dha ti dha ge dhee na ge na

7.  ti - dha ti dha dha tr kt dha ti dha ge dhee na ge na

8.  dha ti dha tr kt dha tr kt dha ti dha ge dhee na ge na

9.  tr kt tr kt dha dha tr kt dha ti dha ge dhee na ge na

10.  tr kt dha tr kt dha ge na dha ti dha ge dhee na ge na

The alphabet of symbols recognised by the system is { tr, kt, dha, ti, etc.}.  The first stages of
grammatical inference are summarised in Fig.2.  S is the starting state and nil1, nil2, etc. the
accepting states of the finite-state acceptor.
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tr  kt  dha  ti  dha  dha  tr  kt  dha  ti  dha  ge  dhee  na  ge na
S1 nil 1

ti  dha  tr  kt  dha  dha  tr  kt  dha  ti  dha  ge  dhee  na  ge na
S2 nil 2

tr  kt  dha  ti  dha  dha  tr  kt  dha  ti  dha  ge  dhee  na  ge na
S1 nil 1

tr  kt  dha  ti  dha  dha  tr  kt  dha  ti  dha  ge  dhee  na  ge na
S1 nil 1

ti  dha  tr  kt

Take first example:

Take second example:

After merging states:

Take third example, etc... Fig.2

Heuristics are used to determine the minimum information that need be added to the finite-state
acceptor in order for the new example to be accepted (Bel, 1988a).  The final automaton is:

-
ti

ti

dha

ti

ti
dha

tr
kt

dha
tr

kt

dha
ti

-

tr      kt      dhatr      kt      dha

tr  kt

dha

dha ti dha ge dhee na ge na

XG

nil

Fig.3ti kt

dha

kt

dha

dha
ge

kt     dha     tr     kt     dha     ge     natr

XH XC XE

XB

XA
XJ

XI

XF

S XD

This representation is simplified in the sense that only those states that are (diverging or
converging) nodes of the graph have been labelled.  This suggests an alternative representation
using a ‘two-layer’ acceptor, given in Fig.4:

TD1

TB2
TA1

TE1

TB1

TC2

XG

nil

XH XC XE

XB

XA
XJ

XI

XF

S

TA1

TB1

TA3 TA3

TE4
TC1

TA1

TF4

TA1

TF1

TF1

TA7 TA8

TB3

XD
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ge

ti

dha

kt
tr

kt
dha

tr

tr

kt
kt

tr

dha

tidha

ti

ti

-

ti
dha tr kt

dha   ti   dha   ge   dhee   na   ge   na

kt

dha

tr

kt

dha

ge

na
dha

TA8

TA3

TB3

TC1

TE4

TB2

TD1
TF4

TF1

TE1

TC2

TA7

TA1

TB1

nil

-

Fig.4

(b) The grammar generated
The grammar for the two-layer acceptor shown in Fig.4 is the following:
GRAM#1

S —>  TE1  XI

XI —>  TA7  XD

XD —>  TA8

XI —>  TF1  XJ

XJ —>  TC2  XA

XA —>  TA1  XB

XB —>  TB3  XD

XI —>  TF1  XG

XG —>  TB2  XA

S —>  TA1  XH

XH —>  TF4  XB

XH —>  TA3  XC

XC —>  TE4  XD

XC —>  TA3  XE

XE —>  TA1  XD

XE —>  TC1  XD

XC —>  TB1  XB

S —>  TB1  XF

XF —>  TA1  XJ

XF —>  TD1  XG

TE4 —>  ti-dhati

TC1 —>  ge

TB3 —>  dhatrkt

TA8 —>  dhatidhagedheenagena

TA3 —>  trktdha

TB1 —>  ti

TA1 —>  dha

GRAM#2

TA7 —>  ktdhatrktdhagena

TC2 —>  trkt

TE1 —>  tr

TF1 —>  kt

TF4 —>  tidhatrkt

TD1 —>  -

TB2 —>  dhati

This grammar is context-free since the right members of most rules in GRAM#1 contain two
variables.  Here it is split into two regular ‘transformational’ sub-grammars corresponding to
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the two automata shown in Fig.4.  The term ‘transformational’ is borrowed from formal
language theory (Kain, 1981, p.24, Bel ,1987c, p.356), not linguistics.

Inferring a two-layer context-free grammar amounts to inferring its equivalent regular
grammar.  The difference between the two representations lies more in their explanatory power
and formatting than in their properties: two-layer context-free grammars are compact and
human-oriented representations of finite-state automata.  Besides, the inference algorithm in
QAVAID writes the two-layer context-free grammar directly.

(c) The vocabulary
TA7, TC2, etc. denote the vocabulary of the piece, and rules in GRAM#2 may be called

lexical rules.  It is interesting to compare this mathematical interpretation of vague concepts like
‘word’ and ‘segmentation’ with musical evidence: chunks like trkt, dhatrkt, and
dhatidhagedheenagena may be called ‘words’ or ‘sequences of words’ in the sense that they
represent blocks that can be substituted or permuted.  However, a unit like kt is never used as a
separate block but is always preceded by tr.  Consequently, a block like ktdhatrktdhagena
should not be thought of as a ‘word sequence’.  Furthermore, within the vocabular confines of
this piece, the same principle applies to ge which cannot be conceived of as a separate unit
because it is always part of dhage.  Notwithstanding this, ge was isolated during processing
because the system looked for the longest string common to trktdhadha and trktdhage,
resulting in trktdha/dha and trktdha/ge.  A more meaningful split would have been
trkt/dhadha and trkt/dhage.  This confirms that the search for a meaningful segmentation
cannot be reduced to a search for the set of the longest common strings in sentences.  On the
other hand, it is not easy to make a decision regarding possible segmentations of ti-dhati or
trktdha without the wider context of adjacent parts of the string.  Generally speaking,
musicians are not able to formalise unambiguously the entire lexicon of most compositions.

It may be argued here that all one-symbol units, except dha and ‘-’, are not words because
they are not interchangeable (i.e. they cannot be mutually permuted or substituted).  A
constraint designed to reject all one-unit words has therefore been implemented in the system.
Thus, in this operational mode (‘chunk’ mode), dha and ‘-’ will also be attached to
neighbouring blocks.  Applied to the set of ten examples presented above, the ‘chunk’ mode
led to the following vocabulary

trkt

tidha

dhatrktdha

dhadha

dheena

gena

trktdhatrktdhagena

dhatidhatrktdha

ti-

dhati

ti-dhati

dhage

dhatidhagedheenagena

and the following finite-state acceptor (Fig.5) which may be compared with that shown in
Fig.3.
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dha
kt

tr ge

dha

ti

dha

tr
dha

kt

dha_

ti

kttr

dha

ti

ti
tr

_

ti

ti

ti
dha

XC

XE

XB

XF

XAXG

kt
dha

dha dhatr 

dha ti dha ge dhee na ge na

Fig.5

nil

kt

tr
kt

dha

dha
dha

dha

tr

kt

tr       kt      dha      tr      kt      dha      ge      na
S XD

In order to assess the validity of this vocabulary in context we may look at the resulting
segmentation of the input data:

1.  trkt / dhati / dhadha / trkt / dhatidhagedheenagena

2.  tidha / trkt / dhadha / trkt / dhatidhagedheenagena

3.  dhatrktdha / tidha / trkt / dhatidhagedheenagena

4.  dhatrktdha / trkt / dhage / dhatidhagedheenagena

5.  dhatrktdha / trkt / dhadha / dhatidhagedheenagena

6.  dhatrktdha / ti-dhati / dhatidhagedheenagena

7.  ti- / dhati / dhadha / trkt / dhatidhagedheenagena

8.  dhatidhatrktdha / trkt / dhatidhagedheenagena

9.  trkt / trkt / dhadha / trkt / dhatidhagedheenagena

10.  trktdhatrktdhagena / dhatidhagedheenagena

The segmentation of nearly all sentences is still unsatisfactory.  Yet the results are not
uninteresting for the very fact that they highlight new problems.  For instance, take sentences 4
and 5: the machine has failed to recognise dhatrktdhatrkt as a repetition of dhatrkt.  If it could
be established that dhatrkt is a word beginning both sentences, then this would have important
consequences for the segmentation of sentences 3 and 6 which begin similarly, and we would
expect the machine to be able to achieve this revised segmentation automatically.  If, on the
other hand, the word has not been established, then the machine should ask questions to
determine the best possible split of dhatrktdhatidhatrkt (example 3) and the other sentences.

(d) The dialogue with QAVAID
Musicians sometimes offer different solutions to the segmentation of the same string,

solutions arrived at when they shift accents to create variety in the musical string of bols.  The
segmentation is apparent because the musicians tend to tap their fingers to reinforce the
accentuation of the patterns.  The acceptance of one split in preference to another may
potentially lead to different structural descriptions later on, although these interpretations are

11



The identification and modelling of a percussion 'language'...  J. Kippen - B. Bel

bound to converge in the process of inductive generalisation (see (f) below).  For example, the
segmentation of sentence 9 above is acceptable, but it might also be interpreted as

trkt / trktdha / dhatrkt / dhatidhagedheenagena  or  trkt / trkt / dhadhatrkt / dhatidhagedheenagena

with equal justification.  Should the system be designed to handle such ambiguity?  So far this
has not been considered necessary in view of the adoption of the strategy that if the
segmentation of a block is ambiguous in all possible contexts, then this block should remain an
indivisable unit (a ‘word’).

The machine is also required to make decisions regarding ‘specific paths’, and this it does
by questioning.  As each new example is introduced, the part of the sentence which represents
the ‘new information’ is displayed.  Owing to the systematic nature of the information
sequence, experts are intuitively aware of that information.

In the dialogue with QAVAID, an alternative answer to ‘yes’ exists in the ‘optional yes’
which requests the system to try to proceed.  However, the system may come up with
unacceptable proposals when exploring the consequences of this option.  Answering ‘no’ to a
question forces the system to backtrack.  Backtracking to a ‘try’ decision results in
retrospectively replacing the ‘try’ with the ‘no’ option.  If all questions are answered with ‘no’,
the system continues to backtrack until only the starting and final states can be merged (see
Fig.2 above).  In this case, the whole sentence is taken as ‘new’ information.

Below is an illustration of the dialogue established with the machine during the analysis of
the ten examples:

[1] >> trktdhatidhadhatrktdhatidhagedheenagena

Specific path: /trktdhatidhadhatrktdhatidhagedheenagena/

Accept?  Y)es N)o....Y

[2] >> tidhatrktdhadhatrktdhatidhagedheenagena

?  trktdhati/dhadhatrktdhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /tidhatrkt/dhadhatrktdhatidhagedheenagena

Accept?  Y)es N)o....Y

[3] >> dhatrktdhatidhatrktdhatidhagedheenagena

?  dhadha/trktdhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /dhatrktdhatidha/trktdhatidhagedheenagena

Accept?  Y)es N)o....N

?  dhadhatr/ktdhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....N

?  trkt/dhatidhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /dhatrktdhatidhatrkt/dhatidhagedheenagena

Accept?  Y)es N)o....Y

[4] >> dhatrktdhatrktdhagedhatidhagedheenagena

?  dhatrktdha/tidha

Y)es N)o T)ry R)eturn to preceding choice....N

?  dhatrktdha/tidhatrkt

Y)es N)o T)ry R)eturn to preceding choice....N

?  dhatrkt/dhatidha

Y)es N)o T)ry R)eturn to preceding choice....N

?  dhatrkt/dhatidhatrkt
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Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrkt/dhatrktdhage/dhatidhagedheenagena

Accept?  Y)es N)o....Y

[5] >> dhatrktdhatrktdhadhadhatidhagedheenagena

?  dhatrkt/dhage

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrktdhatrkt/dhadha/dhatidhagedheenagena

[6] >> dhatrktdhati-dhatidhatidhagedheenagena

?  dhati/dhatrkt

Y )es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrktdhati/-dhati/dhatidhagedheenagena

Accept?  Y)es N)o....N

?  dhati/dhagedheenagena

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: dhatrktdhati/-dhatidhati/dhagedheenagena

Accept?  Y)es N)o....N

Specific path: dhatrkt/dhati-dhati/dhatidhagedheenagena

Accept?  Y)es N)o....Y

[7] >> ti-dhatidhadhatrktdhatidhagedheenagena

Specific path: /ti-/dhatidhadhatrktdhatidhagedheenagena

Accept?  Y)es N)o....Y

[8] >> dhatidhatrktdhatrktdhatidhagedheenagena

Specific path: /dhatidhatrkt/dhatrktdhatidhagedheenagena

[9] >> trkttrktdhadhatrktdhatidhagedheenagena

?  tidha/trkt

Y)es N)o T)ry R)eturn to preceding choice....Y

Specific path: /trkt/trktdhadhatrktdhatidhagedheenagena

[10] >> trktdhatrktdhagenadhatidhagedheenagena

Specific path: /trktdhatrktdhagena/dhatidhagedheenagena

Accept?  Y)es N)o....Y

One of the most interesting features of the dialogue is the backtracking relating to example 3.
The machine’s first attempt to segment the string results in a specific path that isolates a trkt
from a dha.  In view of the string’s inherent symmetry of two dhatrkt separated by a dhati this
appears unsatisfactory.  In consequence, ‘no’ is returned.  Further questioning establishes
nothing more than a correct specific path recognising the variable part of the string and splitting
it from the cadence common to all examples.  The machine seeks further clarification during the
analysis of examples 4 and 6, and several ‘no’ decisions are returned before a correct
segmentation is reached.

Following the analysis, the resulting segmentation of the input data is:
1.  trkt / dhati / dhadhatrkt / dhatidhagedheenagena

2.  tidha / trkt / dhadhatrkt / dhatidhagedheenagena

3.  dhatrkt / dhati / dhatrkt / dhatidhagedheenagena

4.  dhatrkt / dhatrkt / dhage / dhatidhagedheenagena

5.  dhatrkt / dhatrkt / dhadha / dhatidhagedheenagena

6.  dhatrkt / dhati-dhati / dhatidhagedheenagena

7.  ti- / dhati / dhadhatrkt / dhatidhagedheenagena
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8.  dhatidhatrkt / dhatrkt / dhatidhagedheenagena

9.  trkt / trkt / dhadhatrkt / dhatidhagedheenagena

10.  trktdhatrktdhagena / dhatidhagedheenagena

Knowledge on vocabulary is stored in the following format:
Recognised words:

trktdhatrktdhagena

tidha

dhatidhatrkt

ti-

dhati-dhati

dhagedheenagena

dhati

dhage

dhatrkt

dhadhatrkt

dhatidhagedheenagena

trkt

trktdhatidhagedheenagena

dhadha

Correct splits:

tidha / trkt

dhati / dhagedheenagena

dhati / dhatrkt

dhatrkt / dhage

dhatrkt / dhatidhatrkt

trkt / dhatidhagedheenagena

dhadha / trktdhatidhagedheenagena

trktdhati / dhadhatrktdhatidhagedheenagena

Incorrect splits:

dhatrkt / dhatidha

dhatrktdha / tidhatrkt

dhatrktdha / tidha

dhadhatr / ktdhatidhagedheenagena

(e) Inferring complete segmentation
The machine can be requested to check whether or not smaller significant chunks may be

found in the input data, thereby completing the structural description of the input sequence.
This leads to the following dialogue:

split dhatrkt / dhagena ?  Yes

split dhati / -dhati ?  No

split dhati- / dhati ?  No

split dhage / dheenagena ?  No

and to the segmentation:
1.  trkt / dhati / dhadha / trkt / dhati / dhagedheenagena

2.  tidha / trkt / dhadha / trkt / dhati / dhagedheenagena

3.  dhatrkt / dhati / dhatrkt / dhati / dhagedheenagena

4.  dhatrkt / dhatrkt / dhage / dhati / dhagedheenagena

5.  dhatrkt / dhatrkt / dhadha / dhati / dhagedheenagena

6.  dhatrkt / dhati-dhati / dhati / dhagedheenagena

7.  ti- / dhati / dhadha / trkt / dhati / dhagedheenagena

8.  dhatidhatrkt / dhatrkt / dhati / dhagedheenagena

9.  trkt / trkt / dhadha / trkt / dhati / dhagedheenagena

10.  trkt / dhatrkt / dhagena / dhati / dhagedheenagena

Here the system has split dhati / dhagedheenagena on the basis of a decision taken during
the analysis of item 6 above.  Nevertheless this sequence is known to be a common suffix to
each sentence in this qa‘ida.  Therefore, any generalisation tending to modify it is likely to be
irrelevant.  To cut the search space of generalisations, it is possible to instruct the machine to
relink dhati and dhagedheenagena.  Segmentation is reversible since it does not alter the
original finite-state acceptor.  Once the segmentation process has been invoked, it is
automatically re-activated each time a new positive example is entered.
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Segmentation may be viewed as inferring syntactic knowledge: labelling particular states in
the finite-state acceptor.  Labelled states are eligible to have new paths branching from them, or
they may be merged in a generalisation process.  In segmentation, lexical knowledge is
modified.  For instance a new word, dhagena, has been inferred, and expressions like
trktdhatrktdhagena that appear as sequences of words have been deleted from the lexicon.

(f) Generalising the grammar
The grammar given below is the outcome of the processes described above.  For the sake of

clarity, the system has relabelled the states (variables) appending numbers that represent their
durations.  For example, SA10 is always derived as a string (a suffix sequence) of ten terminal
symbols.

GRAM#1

S  —>   TA3   SA13

SA13  —>   TA3   SA10

SA10  —>   TC2   SA8

SA8  —>   TD2   SA6

SA6  —>   TA6

SA10  —>   TA2   SA8

SA13  —>   TC5   SA8

SA13  —>   TD2   SB11

SB11  —>   TA3   SA8

S  —>   TB2   SA14

SA14  —>   TD2   SA12

SA12  —>   TA2   SB10

SB10  —>   TB2   SA8

S  —>   TE2   SA14

S  —>   TF2   SB14

SB14  —>   TB2   SA12

S  —>   TB2   SB14

...

S  —>   TB2   SC14

SC14  —>   TA3   SA11

SA11  —>   TB3   SA8

S  —>   TD2   SD14

SD14  —>   TA3   SB11

GRAM#2

TB3  —>   dhagena

TF2  —>   tidha

TE2  —>   ti-

TC5  —>   dhati-dhati

TA6  —>   dhagedheenagena

TD2  —>   dhati

TC2  —>   dhage

TA3  —>   dhatrkt

TB2  —>   trkt

TA2  —>   dhadha

Space limitations prevent us from showing in full detail the interaction between the expert
and the machine.  In brief, QAVAID tries to enlist states that may be merged or connected with
new paths.  Domain-dependent knowledge limits the number of states to be considered: since
all sentences must be of the same duration, two states are eligible only if they denote suffix
sequences of equal durations.  In the grammar above, the state mergings to be considered are:
SA11 = SB11, SD14 = SA14, SD14 = SB14, SD14 = SC14, SB10 = SA10, and SA14 = SB14
= SC14.  The last merging will be considered first due to the three production rules

S  —>   TB2   SA14

S  —>   TB2   SB14

S  —>   TB2   SC14

that make it reasonable to suppose that suffix sequences derived from SA14, SB14, and SC14
may be similar as their prefix TB2 is identical.  QAVAID also determines pairs of states that
may be connected via new paths using the known vocabulary.  This amounts to substituting or
permuting words of equal lengths such as : trkt / dhati / ti- / tidha / dhage / dhadha and
dhatrkt / dhagena.  Thus, using background knowledge, the search space for possible
generalisations is considerably reduced: only 8 out of 132 pairs of states will be examined,
among which three are considered more significant.

The most practical methodology for generalising a grammar is to allow the machine to choose
a possible generalisation at random and generate the next possible variation.  The variation is
then assessed to be either correct or incorrect by the informant, and the process begins again.
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If, after some time, no further variation may be produced by  a selected generalisation, the
machine will suggest that the generalisation be validated.  It is important to use a stochastic
process in synthesis: if variations were to be enumerated in a strictly systematic order musicians
would quickly lose interest in the experiment.

(g) Random music synthesis and the probabilistic model
Music synthesis in QAVAID may be enumerative (producing all variations in a

predetermined order) or stochastic (producing at random one variation at a time).  Random
synthesis can reflect the probability of occurrence of sentences in the sample sequence from
which the grammar was inferred.  To achieve this, weights are assigned to production rules.
These can be used by the system to compute rule probabilities.  The probabilistic model used
in QAVAID is the same as in the Bol Processor (Kippen and Bel, 1988a) and in probabilistic
grammars (Booth and Thompson, 1973), and the algorithm for inferring weights is similar to
that proposed by Maryanski and Booth (1977, pp.525-26).  Rule weights may be viewed as
flows on the directed graph representing the corresponding finite-state acceptor.  Therefore,
inferring weights amounts to reinforcing paths that are used more frequently.

In synthesis filters can be set to select sentences satisfying properties expressed in
statements such as, for example, ‘a sentence that has a repeated pattern longer than four
symbols and which does not contain dhagena’.

Limitations of the present implementation and scope for research
During the course of this research, we have often been asked whether or not a machine

(indeed, our machine) might ever reproduce the quality of composition or improvisation
expected of human experts.  The assumption behind this question is that there is an indefinable
‘something else’, an extra ‘je ne sais quoi’ that turns ‘correct’ or ‘acceptable’ music into ‘great’
music or an ordinary composer into a Bach, Mozart, or Beethoven.  The underlying implication
is that a machine is not capable of ‘genius’.  It is not our intention to desanctify genius, but
with regard to the musical system under investigation we hold that a number of musical effects
that could be thought of as representative of high-quality composition may be analysed a
posteriori in terms of, for instance, meta-patterns or polyrhythmic effects.  Indeed these effects
can be programmed in synthesis, but they cannot be learned by our system.

We believe, therefore, that it is crucial to devote time and energy to refining models of non-
rigorous reasoning (principally induction and analogy) that serve as heuristics in straightforward
language identification.  At the moment, the grammars inferred from positive examples are tight
fits to the sequence, and the inductive process itself is activated on the basis of a complete
structural description of the input sequence.  In forthcoming versions, QAVAID will search for
‘relevant’ regularities in the input sequence, and start hypothesizing generalisations while
positive examples are still being analysed.  This is similar to the behaviour of an intelligent pupil
who tries to predict a theory even before all facts are known to him/her.

At a higher level, the machine should be able to infer knowledge from the order in which
musical examples are supplied, especially in demonstration/concert situations; this would
amount to describing sequences rather than unordered sets of sentences.  The machine would
then be able to construct meaningful sequences of variations in the same way sentences are
ordered and linked in a discourse.  This problem may be viewed as a variant of sequence
extrapolation (Blum and Blum, 1975, p.126) in which the prediction is non-deterministic
(Dietterich and Michalski, 1986, p.65).

Increasing the prediction power of QAVAID will inevitably mean considering larger sets of
hypotheses, thus requiring more computation time and memory space.  The prototype of
QAVAID has been written in Prolog II, and is currently implemented on a Macintosh computer.
Running the analysis of the ten examples shown above takes about 45 seconds on a Mac II.  In
developing more advanced versions we may use Prolog II+, a much faster version of Prolog II,
or ICON, both of which can be operated under MPW on Macintosh with hard disk.  It should
be kept in mind that the main feature of QAVAID is its dialogue with informants which enables
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the system to gather information about the domain and validate its hypotheses in an incremental
learning situation.  Once validated, hypotheses become part of the representational model (the
grammar or finite-state acceptor) and therefore no backtracking is needed.  In a similar way,
QAVAID deletes each input sentence as soon as it has been used to update the grammar.

Limitations of a cognitive model of music
There are a number of very important aspects of musical ‘behaviour’ that are not taken into

account in this study.  One is the perception of time within a set metric pattern.  Improvisation
is, of course, performed in real time, and therefore a tabla musician must be aware, at any given
moment, of the amount of time left to him and of the different methods at his disposal to chunk
words together to fill precisely that amount of time in some meaningful way (Bel and Kippen,
1988).  Complex calculations are often made with a rapidity that suggests musicians do not
consciously calculate but rather rely on a kind of proleptic leap to a solution.  Nevertheless, the
decision a musician makes can be simulated arithmetically, a process that is normally not
captured in a model based on symbolic representations.

This example points to the question of the psychological validity of cognitive models of
music.  Many studies in ‘classical’ Artificial Intelligence, and indeed this one, are based on the
paradigm that cognition is computational, thereby placing emphasis on reasoning prior to
perception, the latter being seen as a particular case of the former (Barr, 1983).  In such a view,
perception is considered formalisable and symbolic, whereas the learning process is reducible to
serial computation.  The approach that has emerged from the neurosciences, or more specifically
connectionism, takes precisely the opposite view: emphasis is placed on perception, i.e.
recognition, discrimination, classification, and association, whereas reasoning and symbolic
representations are seen as emerging from a mental state which is itself the result of stochastic
interactions in a homogenous (unstructured) network of units of memory (formal neurones).
This process has been termed ‘subcognition’ as opposed to ‘cognition’ by Hofstadter (1985,
p.659).  Connectionist networks have proved efficient in achieving complex tasks, some of
which (e.g. fundamental pitch extraction of complex tones) are associated with musical
concepts.  It is expected that there will be a formidable expansion of this field of research and
applications while new machines based on asynchronous parallelism are being developed.
Indeed, we are far from being able to model, let alone understand, ‘subcognitive’ aspects of
music improvisation.  But we also feel that it would be far-fetched to believe that new machines
will solve the problem on the basis of their structural resemblance to parts of real brains.  Our
feeling, therefore, is that attempts to model musical ‘behaviour’ (improvisation, perception, and
evaluation) will for some time to come continue to rely on the patient identification of concepts
that are not pre-framed in a verbal description.

Conclusion
Experimental ethnomusicology has the potential to play a significant role in the development

of new methods for the transfer of knowledge to computers because it deals with implicit
(unformulated) models based on data which is quantified, bounded, and to some extent related
and consistent.  In North Indian drumming, the data is quantified with limited sets of symbols
(the alphabet), languages are finite (bounded by the metre), language identification is related
(each sentence is unambiguously assigned a parent theme from which it is derived), and
musicians decisions in given contexts retain some kind of reliability (consistence).  This paper
has attempted to show that these properties make it possible to implement methods derived
from the formal theory of inductive learning with the aid of algorithms that are computable in
realistic time on existing machines.

At this stage, our project has started focussing more on the behaviour of informants and
human/machine learners than on the content of the knowledge that is transmitted in teaching
situations.  In the same way that the Bol Processor was demonstrated to be useful in
formalising some aspects of music production and evaluation, we expect that QAVAID will be
helpful in describing some of the stages of the transfer of knowledge in the same context.
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